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Abstract

We study lineability of real functions with �nite preimages. In particular,
we prove that the class of n-to-one functions contains a vector subspace of
dimension n but not of dimension (n + 1). Additionally, we give examples
of star-like families of functions (closed under multiplication by a non-zero
scalar) for which lineability is less than additivity.
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1. Introduction

The symbols N, Q, and R denote the sets of positive integers, rational
and real numbers, respectively. The cardinality of a set X is denoted by
the symbol |X|. In particular, |N| is denoted by ω and |R| is denoted by
c. We consider only real-valued functions. No distinction is made between a
function and its graph. We write f |A for the restriction of f to the set A ⊆ R.
The symbol χA denotes the characteristic function of the set A. For any
subset Y of a vector space V and any v ∈ V we de�ne v+Y = {v+y : y ∈ Y }.

The problem of �nding a �large� vector subspace contained in a given sub-
set of a vector space has gained on importance in recent years and signi�cant
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number of articles have been written on the topic (see [1�4, 6�13]). More
speci�cally, many well known families of functions (considered as subsets of
the vector space RR) have been studied in that context. We will recall here
some of the most recent de�nitions related to the topic (see [1, 2, 6]). Let
F ⊆ RR, E ⊆ R be a �eld, and κ be a cardinal number. We say that F is
κ-lineable over E if F ∪{0} contains a subspace of RR (considered as a space
over E) of dimension κ. The (coe�cient of) lineability of the family F over
the �eld E is denoted by LE(F) and de�ned as follows

LE(F) = min{κ : F is not κ-lineable over E}.

In the case E = R we simply write L(F).
In this paper we focus on the lineability of functions with �nite preimages.

Let us recall the de�nitions of the classes of functions considered in the article.
A function f : R→ R is a:

• linearly independent function if the graph of f is a linearly independent
subset of R2 (over Q) (f ∈ LIF);

• Hamel function if the graph of f is a Hamel basis for R2 (f ∈ HF);

• n-to-one function (n ≥ 1) if for every y ∈ R, |f−1(y)| = n or 0 (f ∈ Fn);

• �nite-to-one function if for every y ∈ R, |f−1(y)| < ω (f ∈ F<ω).

In addition, we introduce the symbol F<n (n ≥ 2) to denote the family of
functions f : R→ R such that for every y ∈ R, |f−1(y)| < n.

The cardinal function A(F), for F  RX , is de�ned as the smallest
cardinality of a family G ⊆ RX for which there is no g ∈ RX such that
g+G ⊆ F (see [15]). It was investigated for various classes of real functions.
The following remark gives the values of A(Fn), A(F<n), and A(F<ω).

Remark 1.1. A(F1) = A(F<n) = A(F<ω) = c and A(Fn) = 2 for n ≥ 2.

Proof. Let F = {f ∈ RR : f |(R \ N) ≡ 0}. Note that |F| = c and g + F 6⊆
F<ω for every real function g since −gχN ∈ F and g + (−gχN) is constant
on N. Hence A(F1) ≤ A(F<n) ≤ A(F<ω) ≤ c. To show that A(F1) ≥ c let
H ⊆ RR be such that |H| < c. Let g ∈ RR be such that for all x1, x2 ∈ R
such that x1 6= x2 we have

(g(x1) + {h(x1) : h ∈ H}) ∩ (g(x2) + {h(x2) : h ∈ H}) = ∅
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(such a function g can easily constructed using trans�nite induction). Notice
that g +H ⊆ F1.

To see that A(Fn) = 2 for n ≥ 2, recall �rst that A(F) ≥ 2 for every
non-empty family F ⊆ RR. To justify the inequality A(Fn) ≤ 2 de�ne f1 ≡ 0
and f2 = χ{0} and note that for every function g we have g + {f1, f2} 6⊆ Fn.
�

Gámez-Merino, Muñoz-Fernández, and Seoane-Sepúlveda (see [8]) estab-
lished a connection between the two cardinal functions A and L. Namely,
they proved the following theorem.

Theorem 1.2. [8, Theorem 2.4] If F ( RR is star-like (i.e., cF ⊆ F for
every c ∈ R \ {0}) and A(F) > c, then L(F) > A(F).

The above theorem was generalized by Bartoszewicz and Gª¡b [2, Theo-
rem 2.2]: If F ( RR is star-like, E ⊆ R is an in�nite �eld, and A(F) > |E|,
then LE(F) > A(F). Theorem 1.2 guarantees that families of functions
with large additivity (greater than c) contain a subspace of large dimension
(greater than or equal to additivity). The authors asked a question whether
the above theorem can be extended to classes of functions with lower additiv-
ity. Speci�cally, does Theorem 1.2 remain true if 2 < A(F) ≤ c? A negative
answer to this question was given by Bartoszewicz and Gª¡b in [2]. In par-
ticular, they proved that for every κ ≤ c there exists a family F ⊆ RR such
that A(F) = κ and L(F) = 2. It still may be of interest to �nd such families
among those that were previously de�ned and studied in other contexts. We
identify three of such classes of functions.

Remark 1.3. The families HF,LIF, and F1 are all star-like. In addition,
A(HF) = ω, A(F1) = A(LIF) = c and L(HF) = L(F1) = L(LIF) = 2.

Proof. The equalities A(HF) = ω and A(LIF) = c were proved in [16, 17].
For A(F1) = c see Remark 1.1 and for L(F1) = 2 see Theorem 2.3. (See
also [9].) To see L(HF) = L(LIF) = 2 note that for any two functions f, g
we have (g(0)f − f(0)g)(0) = 0, hence g(0)f − f(0)g /∈ LIF. The fact that
the classes HF,LIF, and F1 are star-like easily follows from the de�nitions
of these classes. �

2. Main results

We �rst determine LQ(HF) and LQ(LIF). To do that we will make use of
the following lemma.
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Lemma 2.1. [18, Lemma 3] Let B ⊆ R be a Hamel basis. Assume that
h : R→ R is such that h|B ≡ 0. Then h is a Hamel function i� h|(R \ B) is
one-to-one and h[R \B] ⊆ R is a Hamel basis.

Theorem 2.2. LQ(HF) = LQ(LIF) = c+.

Proof. First observe that since HF ⊆ LIF we have LQ(HF) ≤ LQ(LIF).
Therefore it su�ces to show LQ(LIF) ≤ c+ and LQ(HF) ≥ c+. The inequality
LQ(LIF) ≤ c+ follows from the fact that in any collection of functions of
cardinality > c, there are two distinct functions f1, f2 such that f1(0) = f2(0)
and then f1−f2 /∈ LIF. (Note here that the inequality LQ(LIF) ≥ c+ follows
from theorem of Bartoszewicz and Gª¡b [2, Theorem 2.2].)

By Lemma 2.1, the inequality LQ(HF) ≥ c+ follows from the existence of
a family of Hamel bases Hα = {hαξ : ξ < c} ⊆ R (α < c) such that

(∆) {p1hα1
ξ + · · ·+ pkh

αk
ξ : ξ < c} is a Hamel basis

for all α1 < · · · < αk < c and p1, . . . , pk ∈ Q \ {0}, k ≥ 1. Indeed, if such a
family exists then functions de�ned by

fα = (B × {0}) ∪ {(xξ, hαξ ) : ξ < c}

(where B is a Hamel basis and R\B = {xξ : ξ < c}) are linearly independent
over Q and spanQ{fα : α < c} ⊆ HF ∪ {0}.

Let V = {Hα} be a maximal set of Hamel bases with the property (∆)
and assume that |V | < c. Using trans�nite induction we will de�ne a Hamel
basis H = {hξ : ξ < c} such that V ∪ {H} still possesses the property (∆).
Let R = {yγ : γ < c} and �x λ0 < c. Assume that the construction has been
carried out for every λ < λ0 satisfying the following conditions:

(i) λ ∈ Iλ, where Iλ = {ξ < c : hξ is de�ned after stage λ},

(ii) |Iλ| ≤ max(ω, λ, |V |),

(iii) for all k ≥ 1, α1 < · · · < αk < |V |, and p1, . . . , pk ∈ Q we have that
{hξ + p1h

α1
ξ + · · ·+ pkh

αk
ξ : ξ ∈ Iλ} is linearly independent over Q and

yλ ∈ spanQ{hξ + p1h
α1
ξ + · · ·+ pkh

αk
ξ : ξ ∈ Iλ}.

Put I = {ξ < c : hξ is de�ned before the step λ0} =
⋃
λ<λ0

Iλ and observe
that |I| ≤ max(ω, λ0, |V |). If λ0 /∈ I then choose

hλ0 6∈ spanQ({hξ : ξ ∈ I} ∪ {hκξ : ξ ∈ I, κ < |V |}).
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This can be done because the cardinality of this span is not bigger than
max(ω, λ0, |V |) < c. Hence the condition (i) is satis�ed for λ0.

Next we will assure that the condition (iii) holds for λ0 using an additional
induction process. Fix a well ordering

{(kτ , ατ1 , . . . , ατkτ , pτ1, . . . , pτkτ ) : τ < max(ω, |V |)} of

{(k, α1, . . . αk, p1 . . . , pk) : k ≥ 1, α1 < · · · < αk < |V |, p1, . . . , pk ∈ Q}

and an ordinal number β < max(ω, |V |). Suppose that the induction process
has been performed for every τ < β. Let Iτ = {ξ < c : hξ is de�ned after step τ}
(observe here that I ∪ {λ0} ⊆ I0) and assume that

(a) |Iτ | ≤ max(ω, λ0, |V |),

(b) for all k ≥ 1, α1 < · · · < αk < |V |, p1, . . . , pk ∈ Q we have that
{hξ + p1h

α1
ξ + · · ·+ pkh

αk
ξ : ξ ∈ Iτ} is linearly independent over Q,

(c) yλ0 ∈ spanQ{hξ + pτ1h
ατ1
ξ + · · ·+ pτkτh

ατkτ
ξ : ξ ∈ Iτ}.

We need

yλ0 ∈ spanQ{hξ + pβ1h
αβ1
ξ + · · ·+ pβ

kβ
h
αβ
kβ

ξ : ξ ∈
⋃
τ<β

Iτ}.

If this is not the case, choose γ ∈ c \
⋃
τ<β I

τ such that for all m ≥ 1,
p1, . . . , pm ∈ Q \ {0}, and α1 < · · · < αm < |V | we have that p1h

α1
γ + · · · +

pmh
αm
γ is not an element of

spanQ({hξ : ξ ∈
⋃
τ<β

Iτ} ∪ {hκξ : ξ ∈
⋃
τ<β

Iτ , κ < |V |} ∪ {yλ0}).

Such a γ exists as the above span has cardinality less than c and by the
condition (∆) the set {p1hα1

ξ + · · · + pmh
αm
ξ : ξ < c} is a Hamel basis for all

m ≥ 1, p1, . . . , pm ∈ Q \ {0}, and α1 < · · · < αm < |V |.

Set hγ = yλ0− (pβ1h
αβ1
γ + · · ·+pβ

kβ
h
αβ
kβ
γ ) and Iβ =

⋃
τ<β I

τ ∪{γ}. Obviously
|Iβ| ≤ |

⋃
τ<β I

τ |+ 1 ≤ max(ω, λ0, |V |) and

yλ0 ∈ spanQ{hξ + pβ1h
αβ1
ξ + · · ·+ pβ

kβ
h
αβ
kβ

ξ : ξ ∈ Iβ}.
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Now, to verify that condition (b) holds for β suppose that for some k ≥ 1,
α1 < · · · < αk < |V |, p1, . . . , pk ∈ Q, {hξ + p1h

α1
ξ + · · ·+ pkh

αk
ξ : ξ ∈ Iβ} are

linearly dependent over Q. Then hγ + p1h
α1
γ + · · ·+ pkh

αk
γ would be in

spanQ({hξ : ξ ∈
⋃
τ<β

Iτ} ∪ {hκξ : ξ ∈
⋃
τ<β

Iτ , κ < |V |})

which in turn would imply that p1h
α1
γ + · · ·+ pkh

αk
γ − (pβ1h

αβ1
γ + · · ·+ pβ

kβ
h
αβ
kβ
γ )

is in

spanQ({hξ : ξ ∈
⋃
τ<β

Iτ} ∪ {hκξ : ξ ∈
⋃
τ<β

Iτ , κ < |V |} ∪ {yλ0}).

Based on the way γ was selected, the latter could only happen if (1) p1 =
· · · = pk = pβ1 = · · · = pβ

kβ
= 0 or (2) k = kβ, αi = αβi , and pi = pβi (i =

1, . . . , k). If (1) was true then yλ0 ∈ spanQ{hξ : ξ ∈
⋃
τ<β I

τ} which we
assumed was not the case when de�ning hγ. If (2) was true then yλ0 =

hγ + pβ1h
αβ1
γ + · · ·+ pβ

kβ
h
αβ
kβ
γ would be in

spanQ({hξ + pβ1h
αβ1
ξ + · · ·+ pβ

kβ
h
αβ
kβ

ξ : ξ ∈
⋃
τ<β

Iτ})

which, again, would result in a contradiction.
Hence, we can assume that the above induction process has been carried

out for all β < max(ω, |V |) and consequently that the condition (iii) holds
for λ0. Note that Iλ0 =

⋃
β<max(ω,|V |) I

β and therefore |Iλ0| ≤ max(ω, λ0, |V |).
This completes the step λ0 of the de�nition ofH. It follows from the condition
(iii) of the inductive construction that H is a Hamel basis (use p1 = · · · =
pk = 0) and that V ∪ {H} possesses the property (∆). This contradicts the
assumption that V = {Hα} is a maximal family of Hamel bases satisfying
(∆). Hence we conclude that |V | = c. �

The following theorem gives the lineability of the functions with �nite
preimages (Fn and F<ω).

Theorem 2.3.

(i) L(Fn) = n+ 1 and LQ(Fn) = c+ for n ≥ 1.

(ii) L(F<ω) = LQ(F<ω) = c+.
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In the proof of the above theorem we will use the following lemma.

Lemma 2.4. Let ζ < c and Em(m ≥ 1) be a collection of (m−1)-dimensional
subspaces of Rm such that |Em| < c and vE ∈ Rm for E ∈ Em. Then
there exists (y0, y1, . . . ) ∈ (R \ {0})ζ such that for every m ≥ 1 and all
ξ1 < · · · < ξm < ζ we have (yξ1 , . . . , yξm) 6∈

⋃
E∈Em (vE + E).

Proof. Choose y′0 ∈ R \ {0}. Next pick γ < ζ and assume that y′ξ is de�ned
for every ξ < γ and that the sequence (y′0, y

′
1, . . . ) ∈ (R \ {0})γ has the

following property:

(?) for every k ≥ 2 and all ξ1 < · · · < ξk < γ we have that for every m ≥ k
and E ∈ Em if Rk × {0}m−k 6⊆ E then (y′ξ1 , . . . , y

′
ξk
, 0, . . . , 0︸ ︷︷ ︸
(m−k) 0′s

) 6∈ E.

Now �x m ≥ k ≥ 2, E ∈ Em, and ξ1 < · · · < ξk−1 < γ. Assume that
Rk × {0}m−k 6⊆ E. We claim that there is at most one y ∈ R such that
(y′ξ1 , . . . , y

′
ξk−1

, y, 0, . . . , 0︸ ︷︷ ︸
(m−k) 0′s

) ∈ E. If that was not the case then we would have

that (0, . . . , 0︸ ︷︷ ︸
(k−1) 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
(m−k) 0′s

) ∈ E and consequently

(y′ξ1 , . . . , y
′
ξk−1

, 0, . . . , 0︸ ︷︷ ︸
(m−k+1) 0′s

) ∈ E.

If k = 2 then the latter would imply that Rk × {0}m−k ⊆ E. If k ≥ 3
then using the inductive assumption (?) we would conclude that Rk−1 ×
{0}m−k+1 ⊆ E, which in combination with (0, . . . , 0︸ ︷︷ ︸

(k−1) 0′s

, 1, 0, . . . , 0︸ ︷︷ ︸
(m−k) 0′s

) ∈ E would

imply again that Rk × {0}m−k ⊆ E. In either case (k = 2 or k ≥ 3) we
would get a contradiction with our assumption about E. Let us denote
the y from above by yk,m,ξ1,...,ξk−1,E (if the y doesn't exist then we can set
yk,m,ξ1,...,ξk−1,E = 0). Now choose y′γ to be a non-zero element of

R \
⋃

k≤m,ξ1<···<ξk−1,E

{yk,n,ξ1,...,ξk−1,E}.

One can easily observe that the constructed sequence (y′0, y
′
1, . . . ) ∈ (R\{0})ζ

satis�es the following property: for every m ≥ 1 and all ξ1 < · · · < ξm < α
we have (y′ξ1 , . . . , y

′
ξm

) 6∈
⋃
E∈Em E.
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Now pick E ∈ Em and ξ1 < · · · < ξm < α. There exists at most one
cξ1,...,ξm,E ∈ R \ {0} such that

cξ1,...,ξm,E(y′ξ1 , . . . , y
′
ξn) ∈ vE + E.

Choose c to be a non-zero element of R\
⋃
m,ξ1<···<ξm,E{cξ1,...,ξm,E} and observe

that (y0, y1, . . . ) = c(y′0, y
′
1, . . . ) has the desired property. �

Proof of Theorem 2.3.

(i) To prove the inequality L(Fn) ≤ n + 1, let f1, f2, . . . , fn+1 ∈ RR and
x1 < x2 < · · · < xn+1 ∈ R. Consider the following homogeneous system of n
linear equations with (n+ 1) unknowns a1, a2, . . . , an+1 :

a1f1(x1) + · · ·+ an+1fn+1(x1) = a1f1(x2) + · · ·+ an+1fn+1(x2)
...

a1f1(xn) + · · ·+ an+1fn+1(xn) = a1f1(xn+1) + · · ·+ an+1fn+1(xn+1)

There exists a non-trivial solution (a1, a2, . . . , an+1) ∈ Rn+1 to the above sys-
tem. Hence, if f1, . . . , fn+1 are linearly independent then span{f1, . . . , fn+1} 6⊆
F<(n+1) ∪ {0}.

The inequality L(Fn) ≥ n+ 1 is obvious for n = 1 so we can assume that
n ≥ 2. We will de�ne f1, . . . , fn ∈ Fn on R = {xξ : ξ < c} by induction on ξ
such that f1, . . . , fn are linearly independent and span{f1, . . . , fn} ⊆ Fn∪{0}.
We will proceed as follows. Let Rn\{(0, . . . , 0)} = {(aβ1 , . . . , aβn) : β < c}. Set
f1(x0), . . . , fn(x0) arbitrarily and pick α < c. Assume that the construction
has been carried out for all ξ < α. Let Dξ = dom(f1) = · · · = dom(fn) after
stage ξ and assume that

(a) {xγ : γ ≤ ξ} ⊆ Dξ, |Dξ| ≤ max(ω, |ξ|), and Dξ1 ⊆ Dξ for ξ1 ≤ ξ,

(b) for every β < c we have that |(aβ1f1 + · · · + aβnfn)−1(y)| ≤ n for all
y ∈ R,

(c) for every β ≤ ξ we have that |(aβ1f1 + · · · + aβnfn)−1(y)| = n for all
y ∈ (aβ1f1 + · · ·+ aβnfn)[{xγ : γ < ξ}].

Put D =
⋃
ξ<αDξ and de�ne P (A) = {(x′1, . . . , x′k) ∈ Ak : x′i 6= x′j for i <

j ≤ k, k ≥ 2} for any A ⊆ R. Note that the condition (b) is equivalent to
the following statement: for all (x′1, . . . , x

′
n+1) ∈ P (D) the set of vectors

{(f1(x′i)− f1(x′i+1), . . . , fn(x′i)− fn(x′i+1)) : i ≤ n}
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is linearly independent. Indeed, the latter is equivalent to the fact that for all
(x′1, . . . , x

′
n+1) ∈ P (D) the following homogeneous system of linear equations

a1f1(x
′
1) + · · ·+ anfn(x′1) = a1f1(x

′
2) + · · ·+ anfn(x′2)

...

a1f1(x
′
n) + · · ·+ anfn(x′n) = a1f1(x

′
n+1) + · · ·+ anfn(x′n+1)

has only the trivial solution (a1 = · · · = an = 0) since the vectors (f1(x
′
i) −

f1(x
′
i+1), . . . , fn(x′i) − fn(x′i+1)) (i ≤ n) are the row vectors of the matrix of

coe�cients of the above system.
If xα 6∈ D then we need to de�ne f1(xα), . . . , fn(xα) preserving the con-

dition (b). Choose

(f1(xα), . . . , fn(xα)) ∈ Rn \
⋃

(x′1,...,x
′
n)∈P (D)

(
(f1(x

′
1), . . . , fn(x′1)) + E(x′1,...,x

′
n)

)
,

where E(x′1,...,x
′
n) = span{(f1(x′i)−f1(x′i+1), . . . , fn(x′i)−fn(x′i+1)) : i ≤ n−1}.

The above choice is possible by Lemma 2.4 (use ζ = n, m = n, En =
{E(x′1,...,x

′
n) : (x′1, . . . , x

′
n) ∈ P (D)}, and vE = (f1(x

′
1), . . . , fn(x′1)) for E =

E(x′1,...,x
′
n); note that |En| < c since |P (D)| ≤ max(ω, |α|)).

Now pick β ≤ α and assume that for every β′ < β we have

|(aβ
′

1 f1 + · · ·+ aβ
′

n fn)−1(y)| = n for all y ∈ (aβ
′

1 f1 + · · ·+ aβ
′

n fn)[{xγ : γ < α}].

We will extend the functions f1, . . . , fn so that

|(aβ1f1 + · · ·+ aβnfn)−1(y)| = n for all y ∈ (aβ1f1 + · · ·+ aβnfn)[{xγ : γ < α}].

Assume that |(aβ1f1+· · ·+aβnfn)−1(yγ)| = n−kγ (0 < kγ < n) for yγ = (aβ1f1+
· · ·+aβnfn)(xγ). Pick (xγ1 , . . . , x

γ
kγ

) ∈ P (R\f−11 [R]). We can inductively (with

respect to i) de�ne f1(x
γ
i ), . . . , fn(xγi ) such that (aβ1f1 + · · ·+ aβnfn)(xγi ) = yγ

for i = 1, . . . , kγ. Indeed, choose

(f1(x
γ
i ), . . . , fn(xγi )) ∈ {(y1, . . . , yn) ∈ Rn : aβ1y1 + · · ·+ aβnyn = yγ}

such that

(f1(x
γ
i ), . . . , fn(xγi )) /∈

⋃
(x′1,...,x

′
n)∈P (f−1

1 [R])

(f1(x
′
1), . . . , fn(x′1)) + E(x′1,...,x

′
n),
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where E(x′1,...,x
′
n) = span{(f1(x′i)−f1(x′i+1), . . . , fn(x′i)−fn(x′i+1)) : i ≤ n−1}.

Note that the above choice is possible since for each (x′1, . . . , x
′
n) ∈ P (f−11 [R]),

{(y1, . . . , yn) ∈ Rn : aβ1y1 + · · · + aβnyn = yγ} and (f1(x
′
1), . . . , fn(x′1)) +

E(x′1,...,x
′
n) are two distinct a�ne hyperplanes (as otherwise we would have

|(aβ1f1 + · · ·+ aβnfn)−1(yγ)| = n).
This �nishes the proof of the statement: for every β ≤ α

|(aβ1f1 + · · ·+ aβnfn)−1(y)| = n for all y ∈ (aβ1f1 + · · ·+ aβnfn)[{xγ : γ < α}].
Hence the condition (c) holds for α and the inductive step of the de�nition of
f1, . . . , fn is completed. It follows from the construction that the conditions
(a)−(c) are preserved. The condition (a) assures that the functions f1, . . . , fn
are de�ned on R and the condition (c) assures that any nontrivial linear
combination of f1, . . . , fn is an n-to-one function. Hence the proof of L(Fn) =
n+ 1 is completed.

To prove LQ(Fn) = c+ �rst observe that in any family of functions of
cardinality > c there are two functions equal on a set of size n + 1 (this
follows from the fact that there are only c-many functions from a set of size
n + 1 into R). Their di�erence is not in Fn. Hence LQ(Fn) ≤ c+. To see
that LQ(Fn) ≥ c+ consider a partition {Aξ : ξ < c} of R into subsets of size
n and a partition {Hα : |Hα| = c, α < c} of a Hamel basis. De�ne fα ∈ Fn
such that fα(R) ⊆ Hα and fα|Aξ is constant for each ξ < c. It can be seen
that fα are linearly independent over Q and spanQ{fα : α < c} ⊆ Fn ∪ {0}.

(ii) First, to see that LQ(F<ω) ≤ c+, observe that, similarly like above (at
the end of proof of (i)), in any family of functions of cardinality > c there
are two functions equal on a set of size ω. Their di�erence is not in F<ω.

To prove that L(F<ω) ≥ c+ we will construct a family {fξ : ξ < c} of
functions such that for all n ≥ 1, (a1, a2, . . . , an) ∈ Rn \ {(0, . . . , 0)}, ξ1 <
. . . ξn < c, and y ∈ R we have |(a1fξ1 + · · · + anfξn)−1({y})| ≤ n. Fix α < c
and assume that for every ξ < α the function fξ is de�ned on {xβ : β < α}
and for all n ≥ 1, (a1, a2, . . . , an) ∈ Rn \ {(0, . . . , 0)}, ξ1 < . . . ξn < α, and
y ∈ R we have |(a1fξ1 + · · ·+ anfξn)−1({y})| ≤ n. We will now de�ne fξ(xα)
for every ξ < α. Fix an n ≥ 1, ξ1 < · · · < ξn < α, β1 < · · · < βn < α. For
n = 1 de�ne Eξ1,β1 = {0} and for n ≥ 2 set

Eξ1,...ξn,β1,...βn = span{(fξ1(xβi)−fξ1(xβi+1
), . . . , fξn(xβi)−fξn(xβi+1

)) : i < n}.
Note that dim(Eξ1,...ξn,β1,...βn) = n− 1. If dim(Eξ1,...ξn,β1,...βn) < n− 1 then we
would get a contradiction with the inductive assumption as

(a1fξ1 + · · ·+ an−1fξn−1)(xβi) = (a1fξ1 + · · ·+ an−1fξn−1)(xβi+1
)
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for i ≤ n− 1 and some (a1, . . . , an) ∈ Rn \ {(0, . . . , 0)}. Indeed, the latter is
equivalent to det([(fξj(xβi) − fξj(xβi+1

))]i≤n−1,j≤n−1) = 0 which obviously is
equivalent to dim(Eξ1,...ξn,β1,...βn) < n− 1. De�ne

En = {Eξ1,...ξn,β1,...βn : ξ1 < · · · < ξn < α, β1 < · · · < βn < α} and

vE = (fξ1(xβ1), . . . , fξn(xβ1))

for E = Eξ1,...ξn,β1,...βn . Next apply Lemma 2.4 (ζ = α) to obtain (y0, y1, . . . ) ∈
(R \ {0})α such that for every n ≥ 1 and all ξ1 < · · · < ξn < α we have
(yξ1 , . . . , yξn) 6∈

⋃
E∈En vE + E. De�ne fξ(xβ) = yξ.

As the next step we will de�ne fα(xβ) for every β ≤ α. Fix γ ≤ α and
assume that fα(xβ) has been de�ned for every β < γ in such a way that for
all n ≥ 1, (a1, a2, . . . , an) ∈ Rn \ {(0, . . . , 0)}, ξ1 < . . . ξn−1 < α, and y ∈ R
we have |(a1fξ1 + · · ·+anfα)−1({y})| ≤ n. Pick β1 < · · · < βn < γ and notice
that

dim(span{(fξ1(xβi)−fξ1(xβi+1
), . . . , fα(xβi)−fα(xβi+1

)) : i ≤ n−1}) = n−1.

This implies that there exists exactly one y = yξ1,...,ξn−1,α,β1,...,βn such that
(fξ1(xβn)− fξ1(xγ), . . . , fα(xβn)− y) is in

span{(fξ1(xβi)− fξ1(xβi+1
), . . . , fα(xβi)− fα(xβi+1

)) : i ≤ n− 1}.

Choose

fα(xγ) ∈ R \ {yξ1,...,ξn−1,α,β1,...,βn : ξ1 < . . . ξn−1 < α, β1 < · · · < βn < γ}.

This completes the step α of the de�nition of the family of functions {fξ : ξ <
c}. It follows from the construction that the functions satisfy the desired
property, namely: for all n ≥ 1, (a1, a2, . . . , an) ∈ Rn \ {(0, . . . , 0)}, ξ1 <
. . . ξn < c, and y ∈ R we have |(a1fξ1 + · · · + anfξn)−1({y})| ≤ n. Hence
span{fξ : ξ < c} ⊆ F<ω ∪ {0}. �

Corollary 2.5. L(F<n) = n and LQ(F<n) = c+ for n ≥ 2.

Proof. The inequality L(F<n) ≥ n is implied by the fact that F(n−1) ⊆ F<n
and Theorem 2.3 (i). The opposite inequality L(F<n) ≥ n follows from the
proof of the inequality L(Fn) ≤ n+ 1 in part (i) of Theorem 2.3 (page 8).

The equality LQ(F<n) = c+ for n ≥ 2 follows from Theorem 2.3 and the
following observation F(n−1) ⊆ F<n ⊆ F<ω. �
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